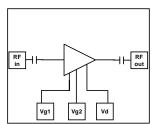


1.0 – 6 GHz Ultra Low Noise Amplifier


Features

Frequency Range: 1.0- 6 GHz0.7 dB mid-band Noise Figure

18 dB mid band Gain
14dBm Nominal P1dB
Bias current : 50mA

0.15-um InGaAs pHEMT Technology
 Chip Size: 1.5 mm x 1.1 mm x 0.1 mm

Functional Diagram

Typical Applications

- Cellular system
- Base stations
- Applications from 1 to 6GHz in Balanced configuration
- Communication receivers and transmitters.

Description

AMT 2122092 is an Ultra Low Noise single stage Amplifier MMIC combining high gain and state of the art noise figure. No-off-chip components are needed, except for additional bypass capacitors in DC bias path for reliable operation. Matching network, DC Blocks and bypass capacitors are provided on-chip for simplification of assembly operation. The amplifier operates on Drain Bias of +5V and Gate biases of +2V & -0.4 V supply. The bias current can be tuned from 30 to 70 mA as per requirement with minor variation in performance. The LNA features 18dB mid-band gain and 0.7 dB mid-band noise figure (typical). The die is fabricated using reliable Low noise 0.15um InGaAs pHEMT process.

Absolute Maximum Ratings (1)

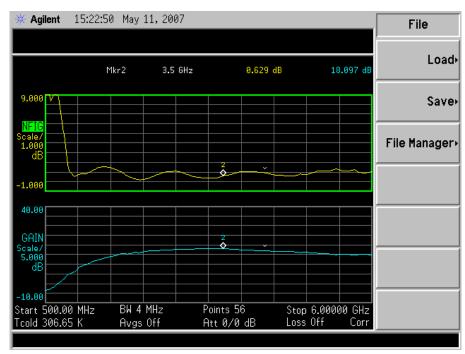
Parameter	Absolute Maximum	Units
Positive DC Supply	12	V
RF Input Power	23	dBm
Supply current	100	mA
Operating Temperature	-55 to +85	°C
Storage Temperature	-65 to +150	°C

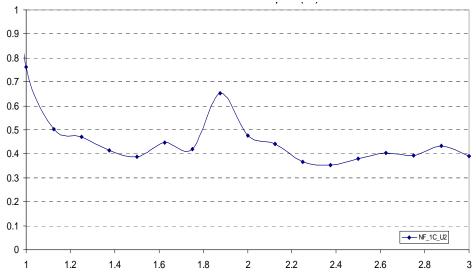
1. Operation beyond these limits may cause permanent damage to the component

Electrical Specifications ⁽¹⁾ @ T_A = 25 °C, Z_o =50 Ω Vdd = +5V, Vg1= -0.4V, Vg2= +2V

Parameter	Min.	Тур.	Max.	Units	
Frequency	1.0	-	6	GHz	
RF Performance between 2.5-4 GHz unless otherwise stated:					
Gain	17	18	20	dB	
Gain Flatness	-	± 0.5	± 0.7	dB	
Noise Figure	0.6	0.7	.8	dB	
Input Return Loss	-6	-8	-	dB	
Output Return Loss	-10	-15	-	dB	
Reverse Isolation	-	-31	-	dB	
Output Power (P1dB) @ 3.3 GHz	-	+14	-	dBm	
Output Third Order Intercept(IP3) (2)	-	30	-	dBm	
Supply Current ⁽³⁾	30	50	70	mA	

Note:

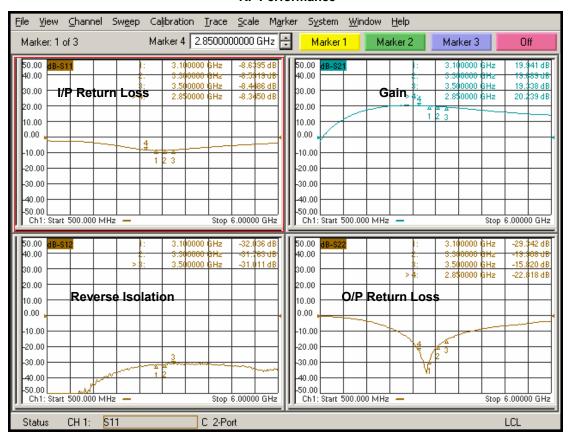

- 1. Electrical specifications as measured in test fixture.
- 2. Estimated value
- 3. Supply current tunable with gate bias (Vg1) with minor variation in performance.


Test fixture data

Vdd = +5V, Vg1 = -0.4V, Vg2 = +2V, Total Current = 50mA, $T_A = 25$ $^{\circ}C$

Noise Figure & Gain performance in 0.5-6GHz

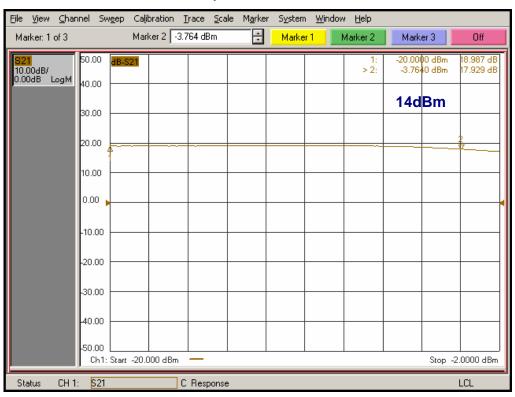
Noise Figure performance in 1 - 3 GHz


Astra Microwave Products Limited, Hyderabad, INDIA

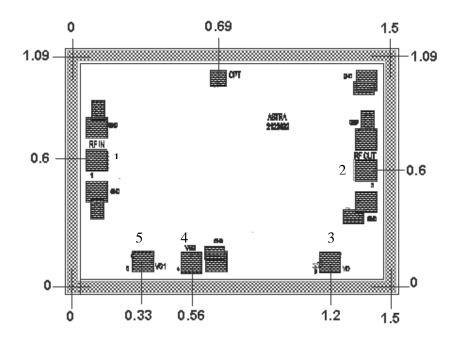
Test fixture data

Vdd = +5V, Vg1 = -0.4V, Vg2 = +2V, Total Current = 50mA, $T_A = 25$ °C

RF Performance



Test fixture data


Vdd = +5V, Vg1 = -0.4V, Vg2 = +2V, Total Current = 50mA, $T_A = 25$ °C

Gain compression at 3.3 GHz

Mechanical Characteristics

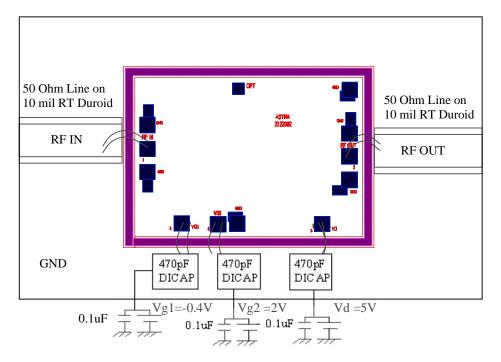
Units: millimeters

Note:

1. All RF and DC bond pads are 100μm x 100μm

2. Pad no. 1: RF In

3. Pad no. 2 : RF Out


4. Pad no. 3: Vdd (470 pF)

5. Pad no. 4: Vg2 (470pF)

6. Pad no. 5: Vg1 (470pF)

Recommended Assembly Diagram

Note:

- 1. Two one mil (0.0254mm) bond wires of minimum length should be used for RF input and Output.
- Two one mil (0.0254mm) bond wires of minimum length should be used from chip bond pad to 470pF bypass capacitors.
- 0.1uF capacitor should be additionally used as second level of bypass for reliable operation.
- 4. All capacitors shown in the assembly diagram (except $0.1\mu F$) are single layer capacitors.

Die attach: For Epoxy attachment, use of a two-component conductive epoxy is recommended. An epoxy fillet should be visible around the total die periphery. If Eutectic attachment is preferred, use of fluxless AuSn (80/20) 1-2 mil thick preform solder is recommended. Use of AuGe preform should be strictly avoided.

Wire bonding: For DC pad connections use either ball or wedge bonds. For best RF performance, use of 250μ m length of wedge bonds is advised. Single Ball bonds of $250-300\mu$ m though acceptable, may cause a deviation in RF performance.

GaAs MMIC devices are susceptible to Electrostatic discharge. Proper precautions should be observed during handling, assembly & testing

All information and Specifications are subject to change without prior notice